Estimation of Punching Shear Capacity of Concrete Slabs Using Data Mining Techniques

Authors

  • A. Kumar Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
  • M. Pal Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
  • P. Aggarwal Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
  • P. Sihag Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
  • Y. Aggarwal Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana, India
Abstract:

Punching shear capacity is a key factor for governing the collapsed form of slabs. This fragile failure that occurs at the slab-column connection is called punching shear failure and has been of concern for the engineers. The most common practice in evaluating the punching strength of the concrete slabs is to use the empirical expressions available in different building design codes. The estimation of punching loads involves experimental setup which is time-consuming, uneconomical and also, more manpower and materials are required. The present study demonstrates the use of data mining techniques as a substitute of former to predict the punching loads on the variation of various parameters. In this study, various type of data mining techniques including Adaptive Neuro-fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and Generalized Neural Network (GRNN) were applied to model and estimate the punching load of reinforced concrete slab–column connections. For the study, a data set consisting of 89 observations from available literature was analysed and randomly selected 62 observations were used for model development whereas the rest 27 were used to test the developed models. While the outcomes of ANN and GRNN model provides suitable estimation performance, the Gaussian membership based ANFIS model performed best in the determination of coefficient of correlation (Cc). Sensitivity study indicates that the parameter effective depth of slab (d) is the most influencing one for the estimation of punching load of reinforced concrete slab–column connections for this data set.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Analysis of Punching Shear Failure of Reinforced Concrete Slabs

Nearly no load bearing behaviour of reinforced concrete members allows such varied interpretations and complex discussions as the shear behaviour. Especially the three-dimensional problem of the punching shear failure of reinforced concrete members is internationally discussed. Nevertheless up to now, there is no unified design approach or even an overall accepted design model. Especially for l...

full text

Punching shear strength of steel fibre reinforced concrete slabs

The ultimate strength of reinforced concrete slabs is frequently governed by the punching shear capacity, which may be increased with addition of traditional fitments such as reinforcing steel, headed studs or shear heads. In addition to these traditional methods of strengthening against punching, steel fibre reinforcement has proved to be an effective and viable alternative. The addition of fi...

full text

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforceme...

full text

Estimation of Evolution of Relative Humidity Distribution for Concrete Slabs

Realistic prediction of concrete shrinkage and creep requires the calculation of the distributions of relative humidity at various times. Although the distributions of the relative humidity can be computed by numerical methods from the differential equation for diffusion, simple prediction formulas can facilitate structural analysis. The purpose of this paper is to present a simple formula for ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 7

pages  908- 914

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023